Analisis Daerah Rawan Banjir Dan Tanah Longsor Di Daerah Aliran Sungai Konaweha Provinsi Sulawesi Tenggara

La Baco, Abdul Manan, Hasbullah Syaf, Sahindomi Bana

Abstract


Banjir dan longsor terutama disebabkan oleh faktor alam seperti curah hujan, topografi, bentuk lahan dan kelokan sungai serta faktor manusia yang meliputi tata guna lahan dan infrastruktur. Tujuan dari penelitian ini adalah menganalisis daerah rawan banjir dan daerah rawan longsor di Wilayah Sungai Konaweha. Penelitian ini dilakukan di DAS Konaweha dengan menggunakan metode survei. Hasil penelitian menunjukkan bahwa tingkat kerawanan banjir di DAS Konaweha tersebar seluas 101.889 hektar (14,60%) 241.794 hektar (34,64%) rawan sedang dan 354.264 hektar (50,76%) merupakan wilayah yang tidak rawan banjir. Daerah dengan tingkat banjir sedang hingga rawan banjir umumnya tersebar di Kabupaten Konawe dan Kolaka Timur. Tingkat kerawanan longsor di DAS Konaweha tersebar di wilayah sesuai dengan tingkat kerawanan longsor yaitu seluas 16.632 hektar (2,38%) kategori tidak rawan, 159.073 hektar (22,79%) rawan, 115.922 hektar (16,62%) kategori kerawanan sedang, 396.388 hektar (56,79%) kawasan rawan dan 9.932 hektar (1,42%) merupakan kawasan sangat rawan longsor.

Kata Kunci: Banjir, DAS Konaweha, Longsor, Daerah Rawan


Full Text:

PDF

References


Alkhasawneh, M.S., U. K. Ngah, L.T. Tay, N.A.M. Isa, and M. S. Al-batah. (2013). Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network. The Scientific World Journal, 2013(415023), 1-12

Badan Penganggulangan Bencana Daerah. 2020. Data dan Informasi Bencana Provinsi Sulawesi Tenggara. BPBD Provinsi Sulawesi Tenggara. Kendari.

Baena, J.A.P., J.S. Luzuriaga and C.I. Fernandez. 2020. Characteristics of Rainfall Events Triggering Landslides in Two Climatologically Different Areas: Southern Ecuador and Southern Spain. Hydrology, 7(3).

Balai Wilayah Sungai Sulawesi IV. 2018. Rencana Teknis Pembangunan Bendungan Pelosika di Kabupaten Konawe dan Kolaka Timur. BWSS IV. Kendari.

Balai Wilayah Sungai Sulawesi IV. 2018. Rencana Teknis Pembangunan Bendungan Ameroro di Kabupaten Konawe. BWSS IV. Kendari.

Benito, G. and P.F. Hudson. 2010. Flood Hazards: The Context of Fluvial Geomorphology. In book: Geomorphological Hazards and Disaster Prevention (pp.111-128). Chapter: 10 Publisher: Cambridge University Press.

BPDASHL Sampara. 2018. Analisis Karakteristik Daerah Aliran Sungai Konaweha Provinsi Sulawesi Tenggara. Balai Pengelolaan Daerah Aliran Sungai dan Hutan Lindung Sampara. Kendari,

Chang, K.T., A. Merghadi, A.P. Yunus, B.T. Pham and J. Dou. 2019. Evaluating Scale Effects of Topographic Variables in Landslide Susceptibility Models Using GIS-Based Machine Learning T.techniques. Scientific Reports ,(9), Article number: 12296

Chen, C.Y. and W. L. Huang. 2012. Land Use Change and Landslide Characteristics Analysis for Community-Bbased Disaster Mitigation. Springer Science+Business Media B.V. DOI 10.1007/s10661-012-2855-y.

Chen, L., Z. Guo, K. Yin, D. P. Shrestha and S. Jin. 2019. The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China). Nat. Hazards Earth Syst. Sci, 19 (10), 2207–2228.

Cook, A and V. Merwade. 2019. Geometric Configuration and Modeling Approach on Flood Inundation Mapping. Journal of Hydrology 377(1):131-142.

Cunha, N., M.R. Magalhaes, T. Domongos and M.M. Abreu. 2017. The land morphology approach to flood risk mapping: An application to Portugal. Journal of Environmental Management, 193:172-187.

Dinas Lingkungan Hidup Provinsi Sulawesi Tenggara. 2020. Rencana Aksi Daerah Adaptasi Perubahan Iklim Provinsi Sulawesi Tenggara. Dinas Lingkungan Hidup Provinsi Sulawesi Tenggara. Kendari

Gentilucci, M., M. Materazzi and G. Pambianchi. 2021. Statistical Analysis of Landslide Susceptibility, Macerata Province (Central Italy). Geology Division, School of Science and Technology, University of Camerino, 62032 Camerino. Italy.

Goebel, P.C., S. K. Pregitzer and B. J. Palik. 2011. Influence of Flooding and Landform Properties on Riparian Plant Communities in an Old-Growth Northern Hardwood Watershed. Springer. Wetlands, 32:679–691.

Gruiter, D. 2020. Applying floodplain Geomorphology to Flood Management (The Lower Vistula River upstream from Plock, Poland). Grzegorz Wierzbicki, Piotr Ostrowski and Tomasz Falkowski. 12(1).

Guo, J. Y. Yin, Y. Cui, M. Qin, T. Li and C. Wang. 2020. The Effect of Topography on Landslide Kinematics: a Case Study of The Jichang Town Landslide in Guizhou, China. Springer. 959–973

Kroh, P. 2016. Analysis of land use in landslide affected areas along the Łososina Dolna Commune, the Outer Carpathians, Poland. Geomatics. Natural Hazards and Risk. Journal, 8(2).

Kumalasari, H., R. H. Koestoer and H.S. Hasibuan. 2020. Disaster Risk Mitigation of Landslide for Sustainability of Geothermal Production in Bandung Regency, West Java Province, Indonesia. International Conference on Environmental Resources Management in Global Region. IOP Conf. Series: Earth and Environmental Science.

La Baco. 2012. Analisis Alternatif Penggunaan Lahan untuk Menjamin Ketersediaan Sumberdaya Air di Daerah Aliran Sungai Konaweha Provinsi Sulawesi Tenggara. Disertasi Doktor, Sekolah Pascasarjana Institut Pertanian Bogor.

Lu, P., J.A. Smith and N. Lin. 2017. Spatial Characterization of Flood Magnitudes over the Drainage Network of the Delaware River Basin. Journal of Hydrometeology, 18(4), 957–976

Marren, P.M., J.R. Grove, J.A Webb, and M. J. Stewardson. 2014. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology. The Scientific World Journal. 2014(309673), 1-24

Masoudian, M. And S. Theobald. 2011. Influence of Land Surface Topography on Flood Hydrograph. Journal of American Science, 7(11), 248-256

Nakileza, B.R. and S. Nedala . 2020. Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Springer. Geoenvironmental Disasters 7(27).

Paimin, Sukresno dan Purwanto. 2010. Sidik Cepat Kondisi Sub DAS. Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam. Badan Penelitian dan Pengembangan Kehutanan. Bogor

Peraturan Daerah Provinsi Sulawesi Tenggara Nomor 1 Tahun 2015. Pengelolaan Daerah Aliran Sungai Provinsi Sulawesi Tenggara. Lembaran Daerah Nomor 1 Tahun 2015. Kendari, Sulawesi Tenggara.

Peraturan Pemerintah Nomor 37 Tahun 2012. Pengelolaan Daerah Aliran Sungai. Lembaran Negara Republik Indonesia Nomor: 62 Tahun 2012. Jakarta, Indonesia.

Piana P., F. Faccini, F. Luino , G. Paliaga , A. Sacchini and C. Watkins. 2019. Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment. MDPI. Sustainability, 11(4594).

Prastica, R. M. S., R. Apriatresnayanto and D.R. Marthanty. 2019. Structural and Green Infrastructure Mitigation Alternatives Prevent Ciliwung River from Water-Related Landslide. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 1825-1832.

Reichenbach, P., C. Busca, A. C. Mondini, and M. Rossi. 2014. The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy). Springer. Environmental Management Journal. 1372–1384

Rubinato, M., A. Nichols, Y. Peng, J. Zhang, C. Lashford, Y. Cai, P.Z. Lin and S.Tait. 2019. Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Science and Engineering. Elsevier, 12(4), 274-283.

Schumann, G.J.P and K.M. Andreadis. 2016. A Method to Assess Localized Impact of Better Floodplain Topography on Flood Risk Prediction. Research Article. https://doi.org/10.1155/2016/6408319.

Singh, A., S. Pal and D.P. Kanungo. 2020. An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Springer. Environment, Development and Sustainability.

Skrzypczak, I., W. Kokoszka and J. Kogut. 2017. The Impact of Landslides on Local Infrastructure and the Environment. Environmental Engineering 10th International Conference Vilnius Gediminas Technical University Lithuania, 27–28 April 2017.

Thonon, I., H. Middelkoop and M. van der Perk. 2007. morphology and river works on spatial patterns of overbank deposition. Geologie en Mijnbouw, 86(1)

Tohari, A. 2018. Study of rainfall-induced landslide: a review. IOP Conference Series: Earth and Environmental Science, Volume 118, Global Colloquium on GeoSciences and Engineering 201718–19 October 2017, Bandung, Indonesia.

Umitsu, M. 2009. Landforms and floods in the Ganges delta and coastal lowland of Bangladesh. Marine Geodesy, 20(1)

Valeo C and P. Rasmussen. 2000. Topographic Influences on Flood Frequency Analyses. Canadian Water Resources Journal. 25(4).

Xie, L and H. Zhao. 2013. Correlation between flood disaster and topography: A case study of Zhaoqing City. Journal of Natural Disasters, 22(6), 240-245.

Yong, N.S., I.N. Mohamad and W.K. Lee. 2018. Experimental Study on River Meander Planform Pattern. International Journal of Engineering & Technology, 7(3.11), 214.

Yousefi, S., S. Mirzaee, S.D. Keesstra and N. Surian. 2017. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology.

Zhang, F., W. Chen, G. Liu, and S. Liang. 2012. Relationships between Landslide Types and Topographic Attributes in a Loess Catchment, China. Journal of Mountain Science, 9(6).

Zhow, T. and T. Endreny. 2020. The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services. MDPI.




DOI: http://dx.doi.org/10.33772/jpw.v6i1.18203

Refbacks

  • There are currently no refbacks.


About license: 
 
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 
LOKASI