Pemetaan Distribusi Kerentanan Penyakit Demam Berdarah di Kota Baubau Menggunakan Algoritma Machine Learning
Abstract
Full Text:
PDFReferences
Adzan, G., & Danoedoro, P. (2012). Penggunaan Logika Fuzzy dalam Pemodelan Spasial Kerentanan DBD di Kota Yogyakarta. Jurnal Bumi Indonesia, 1(3).
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., William Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
Bouhennache, R., Bouden, T., Taleb-Ahmed, A., & Cheddad, A. (2018). A New Spectral Index for the Extraction of Built-Up Land Features From Landsat 8 Satellite Imagery. Geocarto International, 1–21. https://doi.org/10.1080/10106049.2018.1497094
BPS. (2018). Kota Baubau dalam Angka 2018 (2018 ed.). BPS Kota Baubau. https://doi.org/1102001.7472
Bui, D. T., Le, K. T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based Kernel Logistic Regression. Remote Sensing, 8(4), 1–15. https://doi.org/10.3390/rs8040347
Coll, C., Galve, J. M., Sanchez, J. M., & Caselles, V. (2010). Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 547–555. https://doi.org/10.1109/TGRS.2009.2024934
Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital (B. R. W (ed.); 1 ed.). C.V ANDI OFFSET (Penerbit ANDI).
Dinas Kesehatan Kota Baubau. (2017). Profil Kesehatan Kota Baubau Tahun 2017.
Dinas Kesehatan Provinsi Sulawesi Tenggara. (2018). Profil Kesehatan Provinsi Sulawesi Tenggara.
Ding, F., Fu, J., Jiang, D., Hao, M., & Lin, G. (2018). Mapping the Spatial Distribution of Aedes aegypti and Aedes albopictus. Acta Tropica, 178(August 2017), 155–162. https://doi.org/10.1016/j.actatropica.2017.11.020
Farinelli, E. C., Baquero, O. S., Stephan, C., & Chiaravalloti-Neto, F. (2018). Low socioeconomic condition and the risk of dengue fever: A direct relationship. Acta Tropica, 180(January), 47–57. https://doi.org/10.1016/j.actatropica.2018.01.005
Fawzi, N. I. (2014). Pemetaan Emisivitas Menggunakan Indeks Vegetasi (Surface Emissivity Mapping Using Vegetation Indices). Majalah Ilmiah Globë, 16(2), 133–139. https://doi.org/10.13140/RG.2.2.35486.13123
Ganie, M. A., & Nusrath, A. (2016). Determining the Vegetation Indices (NDVI) from Landsat 8 Satellite Data. International Journal of Advanced Research, 4(8), 1459–1463. https://doi.org/10.21474/ijar01/1348
Kementerian Kesehatan RI. (2017). Demam Berdarah Dengue (DBD). Kementerian Kesehatan RI.
Kementerian Kesehatan RI. (2018). Situasi Penyakit Demam Berdarah di Indonesia Tahun 2017.
Khormi, H. M., & Kumar, L. (2011). Modeling Dengue Fever Risk Based on Socioeconomic Parameters, Nationality and Age Groups: GIS and Remote Sensing Based Case Study. Science of the Total Environment, 409(22), 4713–4719. https://doi.org/10.1016/j.scitotenv.2011.08.028
Kurniadi, H., Aprilia, E., Utomo, J. B., Kurniawan, A., & Safril, A. (2018). Perbandingan Metode IDW Dan Spline dalam Interpolasi Data Curah Hujan ( Studi Kasus Curah Hujan Bulanan Di Jawa Timur Periode 2012-2016 ). Prosiding Seminar Nasiional GEOTIK 2018, 215.
Lee, H., Kim, J. E., Lee, S., & Lee, C. H. (2018). Potential Effects of Climate Change on Dengue Transmission Dynamics in Korea. PLoS ONE, Vol. 13(No. 28, Juni 2018), 1–23.
Motevalli, A., Pourghasemi, H. R., & Zabihi, M. (2018). Assessment of GIS-Based Machine Learning Algorithms for Spatial Modeling of Landslide Susceptibility : Case Study in Iran. Comprehensive Geographic Information Systems, 266–268. https://doi.org/10.1016/B978-0-12-409548-9.10461-0
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate Change and Dengue: A Critical and Systematic Review of Quantitative Modelling Approaches. BMC Infectious Diseases, 14(1), 1–14. https://doi.org/10.1186/1471-2334-14-167
NASA. (2019). Landsat Science Education. http://landsat.gsfc.nasa.gov/?p=5186
Ngoc Thach, N., Bao-Toan Ngo, D., Xuan-Canh, P., Hong-Thi, N., Hang Thi, B., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46(May), 74–85. https://doi.org/10.1016/j.ecoinf.2018.05.009
Nguyen, N. T., Dang, B.-T. N., Pham, X.-C., Nguyen, H.-T., Bui, H. T., Hoang, N.-D., & Bui, D. T. (2018). Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau Area (Vietnam) using GIS-based Advanced Machine Learning Algorithms : A Comparative Study. Ecological Informatics, 46(March), 74–85. https://doi.org/10.1016/j.ecoinf.2018.05.009
Pineda-Cortel, M. R. B., Clemente, B. M., & Nga, P. T. T. (2019). Modeling and Predicting Dengue Fever Cases in Key Regions of the Philippines using Remote Sensing Data. Asian Pacific Journal of Tropica Medicine, 12(2), 60–66. https://doi.org/10.4103/1995-7645.250838
Sluiter, R. (2008). Interpolation Methods for Climate Data literature review.
USGS. (2019). USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor)
Valor, E., & Caselles, V. (1996). Mapping Land Surface Emissivity from NDVI: Application to European, African, and South American Areas. Remote Sensing of Environment, 57(3), 167–184. https://doi.org/https://doi.org/10.1016/0034-4257(96)00039-9.
WHO. (2018). Dengue and Severe Dengue.
WHO. (2019). Neglected tropical diseases. https://www.who.int/neglected_diseases/en/
Widayani, P. (2010). Pemodelan Spasial Epidemiologi Demam Berdarah Dengue Menggunakan Sistem Informasi Geografi Di Kecamatan Depok Kabupaten Sleman Yogyakarta. Jurnal Geografi Gea, 10(2). https://doi.org/10.17509/gea.v10i2.1025
World Economic Forum. (2017). Global Shapers Survey. In World Economic Forum. http://www.shaperssurvey2017.org
Yu, P. S., Yang, T. C., Chen, S. Y., Kuo, C. M., & Tseng, H. W. (2017). Comparison of Random Forests and Support Vector Machine for Real-Time Radar-Derived Rainfall Forecasting. Journal of Hydro
DOI: http://dx.doi.org/10.33772/jagat.v4i2.14664
DOI (PDF): http://dx.doi.org/10.33772/jagat.v4i2.14664.g10405
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 JAGAT (Jurnal Geografi Aplikasi dan Teknologi)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurusan Geografi Fakultas Ilmu dan Teknologi Kebumian
Jalan H.E.A. Mokodompit, Kampus Hijau Bumi Tridharma, Universitas Halu Oleo
E-mail: jurnal_jagat@uho.ac.id